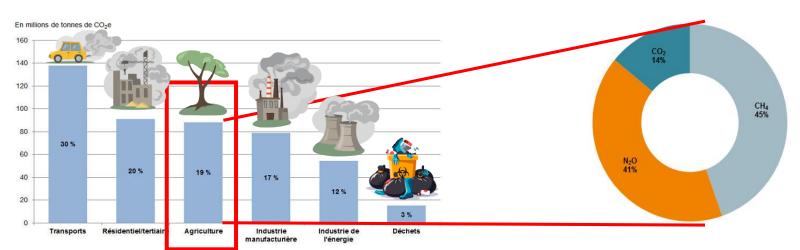


Spatialisation de propriétés biologiques des sols impliquées dans les émissions du gaz à effet de serre N₂O

Jouin C.⁽¹⁾, Alkassem M.⁽¹⁾, Thiaw I.⁽²⁾, Pasquier C.⁽³⁾, Saby N.⁽⁴⁾, Bourennane H.⁽³⁾, de Sède-Marceau M.H.⁽²⁾, Hénault C⁽¹⁾.

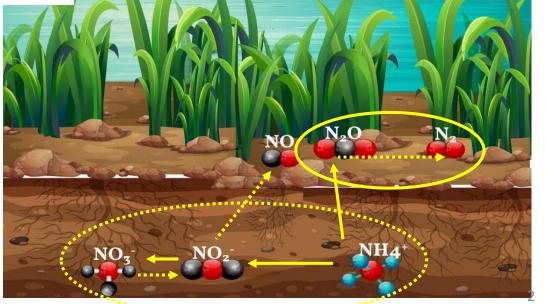
- (1) Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
- (2) Laboratoire ThéMA, UMR 6049, CNRS et Université de Bourgogne Franche-Comté, France.
- (3) UR SOLS, INRAE, 45075 Orléans, France.
- (4) INFOSOL, US1106, INRAE, 45075 Orléans, France



ANR-15-IDEX-0003

CONTEXTE GENERAL

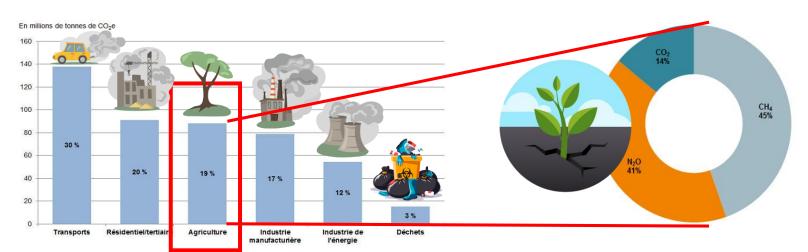
Chiffres clés


Contribution des différents secteurs d'activités aux émissions de gaz à effet de serre en France en 2017 (CITEPA, 2018)

Contribution des différents gaz à effet de serre (en %) aux émissions par le secteur agricole en France en 2017 (CITEPA, 2018)

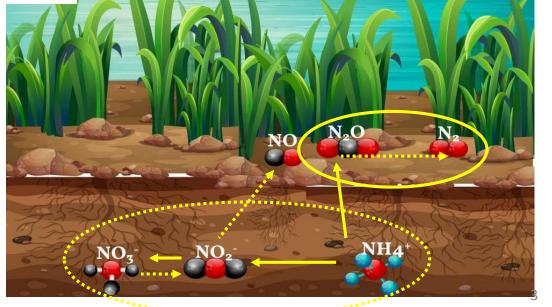
Mécanismes clés

Dénitrification

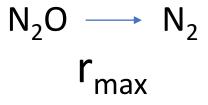

Nitrification _____

CONTEXTE GENERAL

Chiffres clés


Contribution des différents secteurs d'activités aux émissions de gaz à effet de serre en France en 2017 (CITEPA, 2018)

Contribution des différents gaz à effet de serre (en %) aux émissions par le secteur agricole en France en 2017 (CITEPA, 2018)



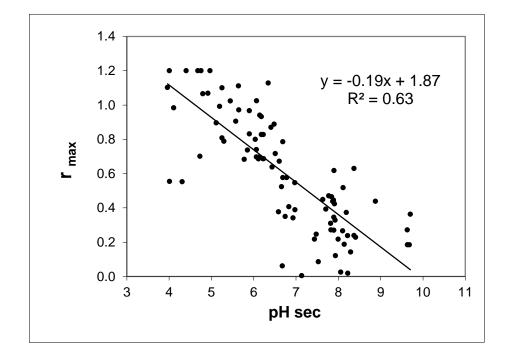
Dénitrification

Nitrification _____

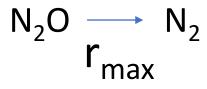
r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype
> 0,8	Faible	N ₂ Ored
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-
< 0,4	Elevée	N ₂ Ored ⁺

Hénault, C., Bourennane, H., Ayzac, A. *et al.*Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. *Sci Rep* 9, 20182 (2019).

https://doi.org/10.1038/s41598-019-56694-3

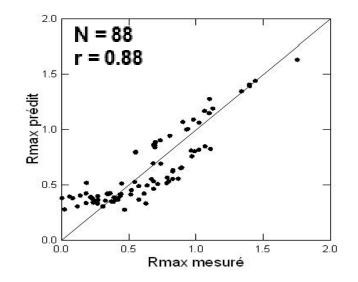


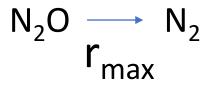
 $N_2O \longrightarrow N_2$ r_{max}


r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype
> 0,8	Faible	N ₂ Ored ⁻
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-
< 0,4	Elevée	N ₂ Ored ⁺



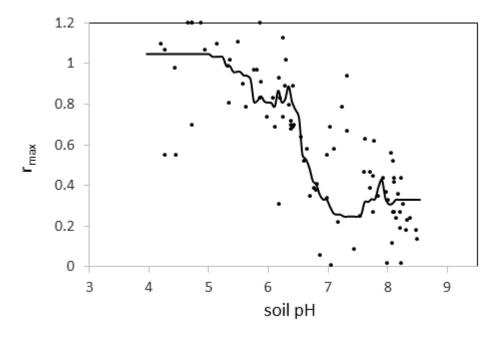
Hénault, C., Bourennane, H., Ayzac, A. *et al*. Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. *Sci Rep* 9, 20182 (2019). https://doi.org/10.1038/s41598-019-56694-3

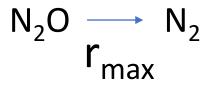




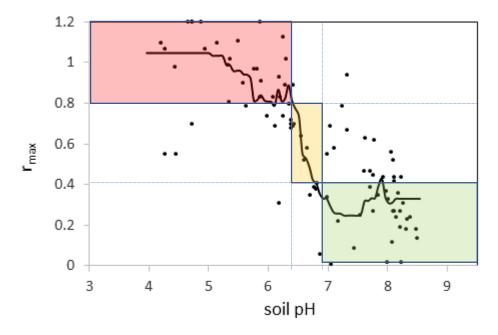
r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype
> 0,8	Faible	N ₂ Ored ⁻
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-
< 0,4	Elevée	N ₂ Ored ⁺

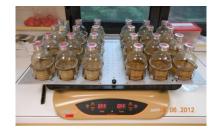
$$r_{max} = -0.4 \ pH_{eau} + 0.026 \ CEC_{colb} - 0.001 \ Clay_{NDC} + 3.13$$

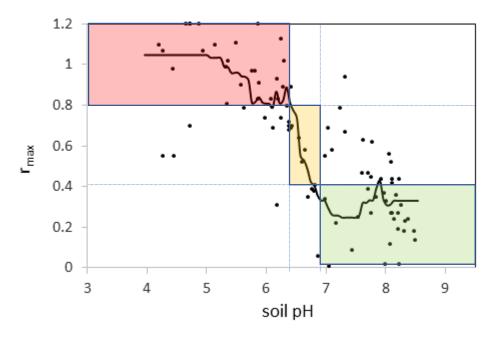


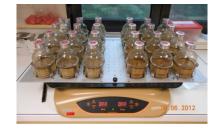


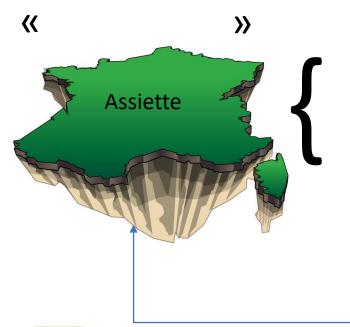
r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype
> 0,8	Faible	N ₂ Ored ⁻
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-
< 0,4	Elevée	N ₂ Ored ⁺

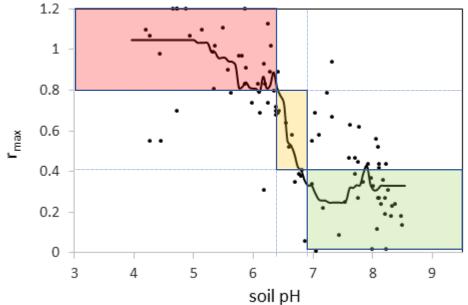


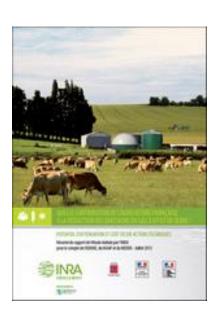



r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype
> 0,8	Faible	N ₂ Ored ⁻
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-
< 0,4	Elevée	N ₂ Ored ⁺


 $N_2O \longrightarrow N_2$ r_{max}

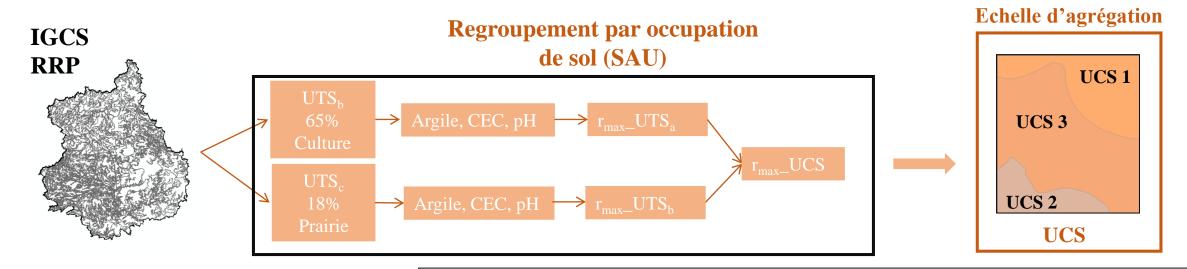

r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype	рН
> 0,8	Faible	N ₂ Ored ⁻	< 6,4
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-] 6,4 – 6,8]
< 0,4	Elevée	N ₂ Ored ⁺	> 6,8




r _{max}	Capacité du sol à réduire N ₂ O en N ₂	Phénotype	рН
> 0,8	Faible	N ₂ Ored	< 6,4
] 0,4 - 0,8]	Intermédiaire	N ₂ Ored+/-] 6,4 – 6,8]
< 0,4	Elevée	N ₂ Ored ⁺	> 6,8

Source : https://www.paysan-breton.fr/2014/06/lete-sera-chaux/

OBJECTIFS


- \triangleright Cartographier le paramètre biologique r_{max} à l'aide de la fonction de pédotransfert et Calculer l'assiette d'intérêt pour la pratique du « chaulage climatique »
 - → à l'échelle de la Bourgogne Franche-Comté à partir de la BDAT
 - à l'échelle de la Bourgogne à partir de IGCS

> Etudier la variabilité

- > intra bases de données (dimension spatio-temporelle de la BDAT)
- inter bases de données (comparaison BDAT, IGCS)
- Comparer l'assiette obtenue
 - > à partir des différentes bases de données mobilisées (BDAT, IGCS et RMQS)
 - > à partir de deux méthodologies de calcul (pH et r_{max})

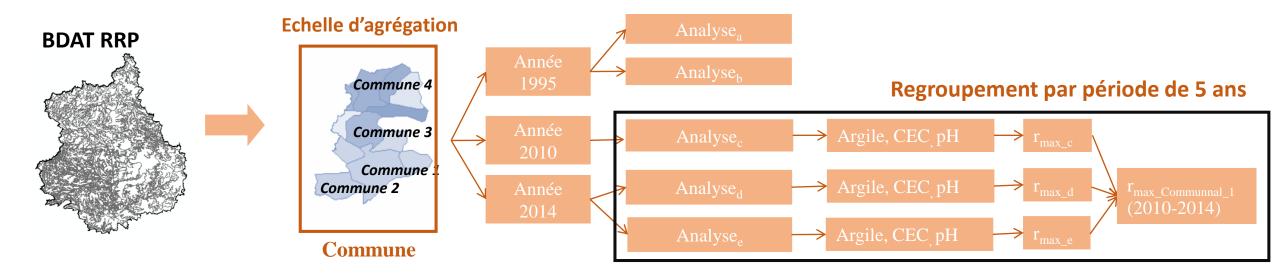
Protocole de cartographie de r_{max} (IGCS)

Données

- Valeurs (min, max et modale)
- % occupation de l'UTS au sein de l'UCS

$$r_{max_UTS_i}$$
= -0.4pHeau $_{UTS\ i}$ + 0.026CEC $_{UTS\ i}$ - 0.001Clay $_{UTS\ i}$ + 3.13

$$r_{\text{max UCS}} = \sum_{i} (\text{UTS}_i(\%) * \text{rmax}_{\text{UTS}_i})$$


Pré-traitement

- modale pas renseignée→ moyenne (min, max).
- min max pas renseignées → enregistrement supprimé
- la somme des pourcentages des UTS
 - <100% → recalculer les proportionnalités → leur somme arrive à 100 %.
 - égale 100% → Moyenne_{ucs} pondérée par la % d'occupation d'UTS

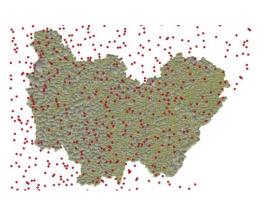
Protocole de cartographie de r_{max} (BDAT)

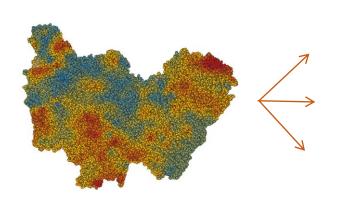
Données

- Variables ciblées
- Deux échelles (cantonale et communale)

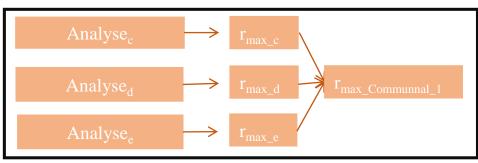
Pré-traitement

- Estimation de la CEC cobalti
- Les valeurs pas renseignées → médiane communale.
- Les variables spatialisées :
 - Échelle Cantonale
 - Cinq périodes (5 ans)


$$r_{\text{max}_i} = -0.4 \text{pHeau}_{\text{analyse}_i} + 0.026 \text{CEC}_{\text{analyse}_i} - 0.001 \text{Clay}_{\text{analyse}_i} + 3.13$$


$$r_{\text{max_Commune_x}(2010-2014)} = \text{med}(\text{rmax}_i)$$

$$r_{\text{max_Canton_x}(2010 - 2014)} = \text{med}(r_{\text{max_Commune_x}(2010 - 2014)})$$

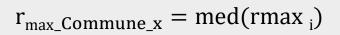


Protocole de cartographie de r_{max} (LucaSoil)

Agrégation Communale

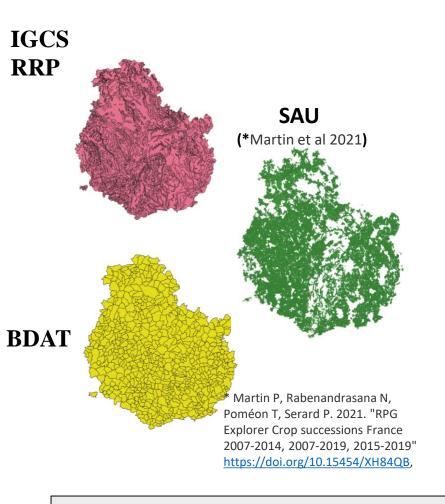
Echelle d'agrégation

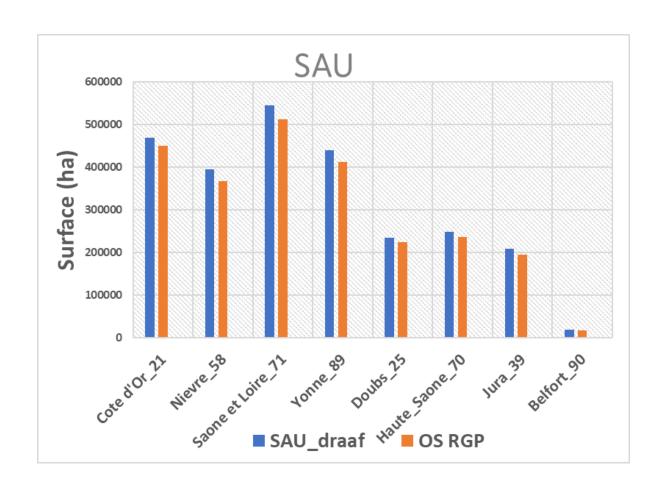
Commune


$$r_{max_i} = -0.4$$
pHeau _{analyse i} + 0.026CEC _{analyse i} - 0.001Clay _{analyse i} + 3.13

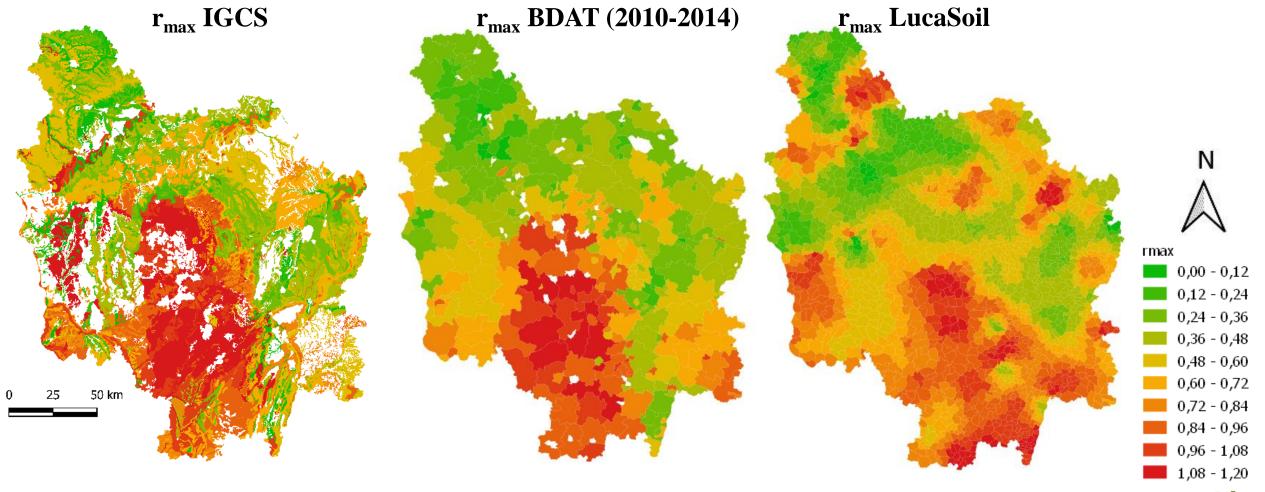
Données

- Variables ciblées
- Deux échelles (cantonale et communale)

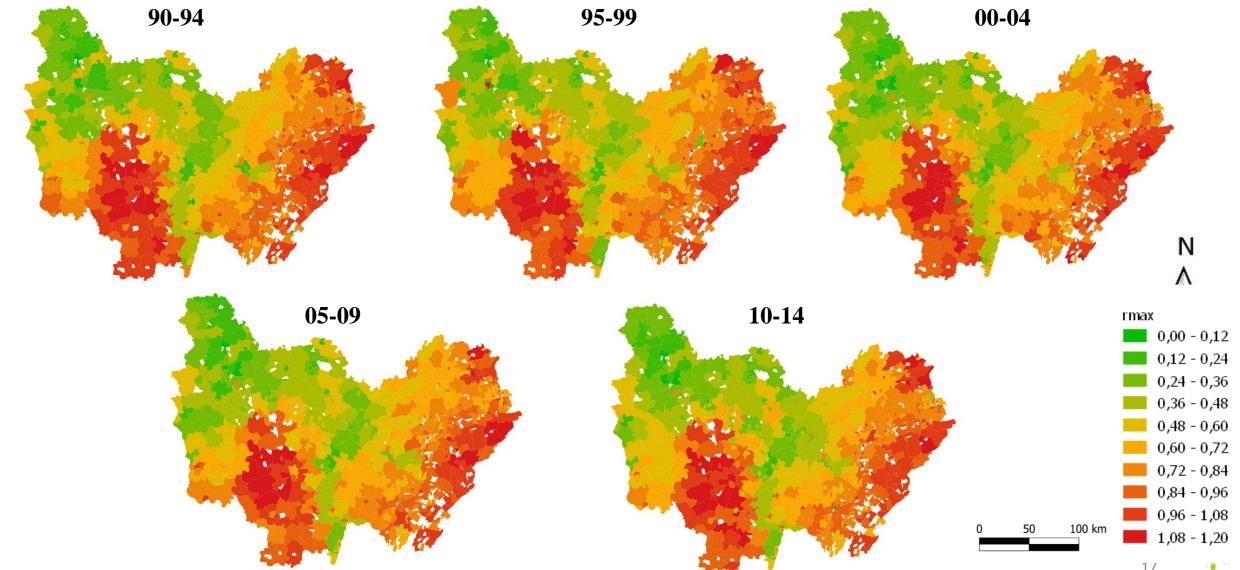

Pré-traitement

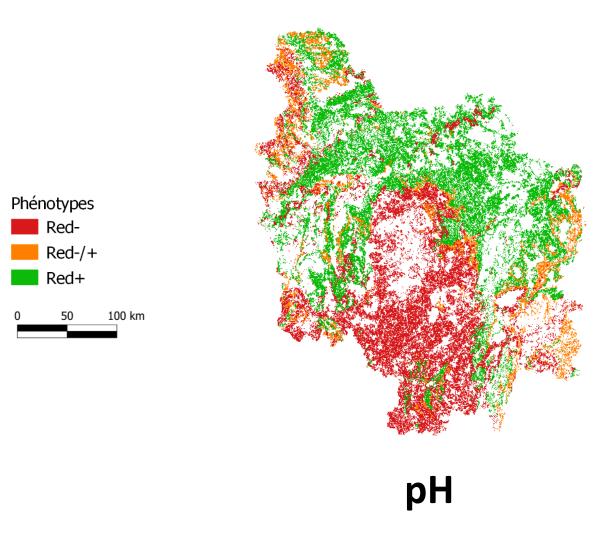

- Estimation de la CEC cobalti
- Les valeurs pas renseignées médiane communale.
- Les variables spatialisées :
 - Échelle Cantonale
 - Cinq périodes (5 ans)

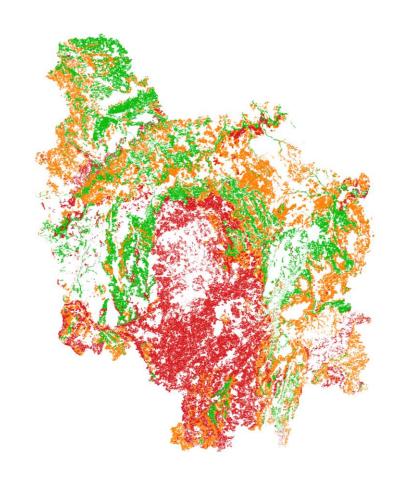
Protocole de calcul de l'assiette (IGCS, BDAT)



Assiette (ha): Surface_Red - + Surface_Red +/-

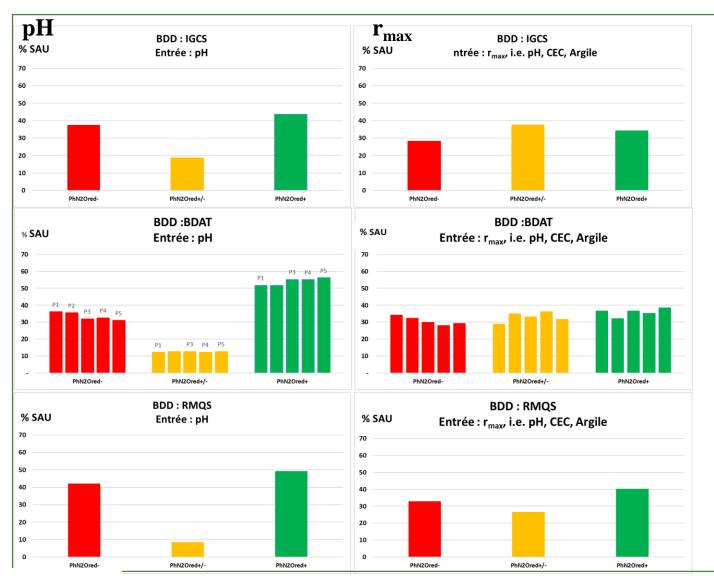



Variabilité inter bases de données (r_{max} IGCS / BDAT)



Variabilité temporelle au sein de la BDAT : Evolution du r_{max} entre 1990 et 2014

Variabilité temporelle IGCS : Evolution du SAU par phénotypes (r_{max}, pH)



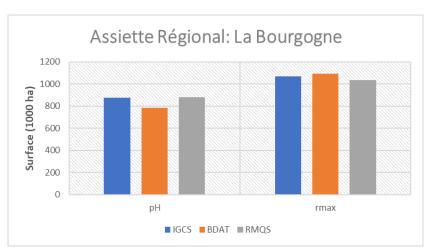
Présentation des trois phénotypes de sol (%) en Bourgogne

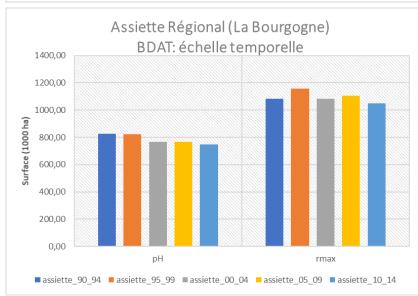
Calculs à partir du pH

- → Résultats obtenus à partir de IGCS, BDAT et RMQS cohérents avec une représentation faible du phénotype red+/- (<20 %)
- → Le phénotype red-représente de l'ordre de 40 % de la SAU

Calculs à partir de r_{max}

- → une représentation plus forte du phénotype red+/-
- Une représentation plus faible du phénotype red –
- → Une augmentation de l'assiette


BILAN


→ Mode de calcul a plus d'impact sur la détermination de l'assiette que la base de données utilisée

Assiette d'intervention (ha) en Bourgogne

Assiette = Surface présentant les phénotypes red- et red+/-

Calculs à partir du pH:

- \rightarrow Assiette_IGCS = 876 872 ha
- \rightarrow Assiette_BDAT = 785 981 ha
- \rightarrow Assiette__{RMOS} = 878 524 ha

A partir du r_{max}:

- \rightarrow Assiette_IGCS = 1 069 621 ha
- → Assiette_BDAT = 1 094 938 ha
- \rightarrow Assiette_RMQS = 1 034 476 ha

BILAN

- Résultats obtenus cohérents entre les bases de données utilisées
- → Résultats différents selon la méthodologie de calcul utilisée (obtention de valeurs plus élevées à partir du r_{max} qu'à partir du pH)

CONCLUSIONS

- > Cartographier des trois variables de sols à l'échelle de:
 - ➤ la Bourgogne Franche-Comté à l'aide de la BDAT
 - ➤ la Bourgogne avec IGCS et avec BDAT
 - Entre les deux BDD, les structurations spatiales des paramètres sont identiques
- Estimation du potentiel d'applicabilité (ou assiette) du chaulage climatique à partir du pH et à partir de r_{max} calculé à l'aide de la fonction de pédotransfert
 - Impact de la méthodologie de calcul
 - Le levier « chaulage climatique » pourrait être mobilisé sur plus de la moitié de la SAU de la Bourgogne
- \triangleright Localisation de l'assiette (à partir du r_{max}) dans la Région naturelle du Morvan et sur le Fossé Bressan
- > La prise en compte de la dimension temporelle de la BDAT permet de remarquer une légère diminution de l'assiette depuis 1990

PERSPECTIVES

 \succ Améliorer le protocole de cartographie r_{max} à l'aide de IGCS (simplification vis-à-vis de l'utilisation de IGCS)

➤ Reprendre les calculs avec les données RMQS (initiés par l'étudiante M2) et introduire la base de données LucaSoil

Intégrer ces connaissances dans les démarches d'inventaire Tier 2 et Tier 3 des émissions de N_2O par les sols (prise en compte d'autres paramètres de contrôle des émissions de N_2O par les sols)

Merci pour votre attention